Linear Algebra II 04/03/2019, Monday, 19:00 – 21:00

1 (6+7+7=20 pts)

Inner product spaces

Let V be a real inner product space with inner product denoted by $\langle v, w \rangle$. Let ||v|| denote the norm associated with this inner product.

- (a) Show that Pythagoras' theorem holds, i.e. if $v, w \in V$ are orthogonal then $||v+w||^2 = ||v||^2 + ||w||^2$.
- (b) Let $S \subset V$ be an *n*-dimensional subspace of V and let $v \in V$. Let p be the orthogonal projection of v onto S. Show that $||p|| \leq ||v||$. Under what condition do we have equality here?
- (c) Also show that $||v p|| \leq ||v||$. Show that equality holds if and only if v is orthogonal to S.

2 (4+4+4+8=20 pts)

Least squares approximation

Consider the inner product space C[-1, 1] with inner product

$$(f,g) := \int_{-1}^{1} f(x)g(x)dx.$$

Let S be the subspace of all functions of the form g(x) = a + bx with $a, b \in \mathbb{R}$.

- (a) Show that the functions 1 and x are orthogonal.
- (b) Compute ||1|| and ||x||.
- (c) Determine an orthonormal basis of \mathcal{S} .
- (d) Compute the best least squares approximation of the function $f(x) = x^{\frac{1}{3}}$ by a function from the subspace S.

Let A be a real $n \times n$ matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$.

- (a) Prove that det(A) is equal to the product $\lambda_1 \lambda_2 \dots \lambda_n$ of the eigenvalues.
- (b) Prove that A^{-1} exists if and only if all eigenvalues of A are nonzero.
- (c) Assume that A^{-1} exists. Prove that A^{-1} is diagonalizable if and only if A is diagonalizable.
- (d) Assume that A is symmetric and that A^{-1} exists. Prove that A is unitarily diagonalizable if and only if A^{-1} is unitarily diagonalizable.

$4 \quad (6+6+7+6=25 \text{ pts})$

Hermitian matrices

A matrix $A \in \mathbb{C}^{n \times n}$ is called normal if $A^H A = AA^H$. A complex matrix is called skew-Hermitian if $A^H = -A$. In this problem, you may use the following result from the book: a complex matrix is normal if and only if it is unitarily diagonalizable.

- (a) Show that if $A \in \mathbb{C}^{n \times n}$ is Hermitian, then it is normal and all its eigenvalues are real.
- (b) Show that if $A \in \mathbb{C}^{n \times n}$ is normal and all its eigenvalues are real, then A is Hermitian.
- (c) Show that if $A \in \mathbb{C}^{n \times n}$ is skew-Hermitian, then it is normal and all its eigenvalues lie on the imaginary axis, i.e. for every eigenvalue λ of A we have $\operatorname{Re}(\lambda) = 0$.
- (d) Show that if $A \in \mathbb{C}^{n \times n}$ is normal and all its eigenvalues lie on the imaginary axis, then it is skew-Hermitian.

10 pts free