Linear Algebra II

04/03/2019, Monday, 19:00-21:00
$1 \quad(6+7+7=20 \mathrm{pts})$

Inner product spaces

Let V be a real inner product space with inner product denoted by $\langle v, w\rangle$. Let $\|v\|$ denote the norm associated with this inner product.
(a) Show that Pythagoras' theorem holds, i.e. if $v, w \in V$ are orthogonal then $\|v+w\|^{2}=$ $\|v\|^{2}+\|w\|^{2}$.
(b) Let $S \subset V$ be an n-dimensional subspace of V and let $v \in V$. Let p be the orthogonal projection of v onto S. Show that $\|p\| \leqslant\|v\|$. Under what condition do we have equality here?
(c) Also show that $\|v-p\| \leqslant\|v\|$. Show that equality holds if and only if v is orthogonal to S.
$2(4+4+4+8=20 \mathrm{pts}) \quad$ Least squares approximation

Consider the inner product space $C[-1,1]$ with inner product

$$
(f, g):=\int_{-1}^{1} f(x) g(x) d x
$$

Let \mathcal{S} be the subspace of all functions of the form $g(x)=a+b x$ with $a, b \in \mathbb{R}$.
(a) Show that the functions 1 and x are orthogonal.
(b) Compute $\|1\|$ and $\|x\|$.
(c) Determine an orthonormal basis of \mathcal{S}.
(d) Compute the best least squares approximation of the function $f(x)=x^{\frac{1}{3}}$ by a function from the subspace \mathcal{S}.

Diagonalization

Let A be a real $n \times n$ matrix with eigenvalues $\lambda_{1}, \lambda_{2} \ldots, \lambda_{n}$.
(a) Prove that $\operatorname{det}(A)$ is equal to the product $\lambda_{1} \lambda_{2} \ldots \lambda_{n}$ of the eigenvalues.
(b) Prove that A^{-1} exists if and only if all eigenvalues of A are nonzero.
(c) Assume that A^{-1} exists. Prove that A^{-1} is diagonalizable if and only if A is diagonalizable.
(d) Assume that A is symmetric and that A^{-1} exists. Prove that A is unitarily diagonalizable if and only if A^{-1} is unitarily diagonalizable.
$4(6+6+7+6=25 \mathrm{pts})$
Hermitian matrices

A matrix $A \in \mathbb{C}^{n \times n}$ is called normal if $A^{H} A=A A^{H}$. A complex matrix is called skewHermitian if $A^{H}=-A$. In this problem, you may use the following result from the book: a complex matrix is normal if and only if it is unitarily diagonalizable.
(a) Show that if $A \in \mathbb{C}^{n \times n}$ is Hermitian, then it is normal and all its eigenvalues are real.
(b) Show that if $A \in \mathbb{C}^{n \times n}$ is normal and all its eigenvalues are real, then A is Hermitian.
(c) Show that if $A \in \mathbb{C}^{n \times n}$ is skew-Hermitian, then it is normal and all its eigenvalues lie on the imaginary axis, i.e. for every eigenvalue λ of A we have $\operatorname{Re}(\lambda)=0$.
(d) Show that if $A \in \mathbb{C}^{n \times n}$ is normal and all its eigenvalues lie on the imaginary axis, then it is skew-Hermitian.

[^0]
[^0]: 10 pts free

